Modelling of concrete/clay interaction :

taking into account complex mineralogy influence of non-saturated conditions and temperature effects

F. Claret, A. Burnol, S. Gaboreau, N. Marty, C.Tournassat, P.Blanc, EC. Gaucher

BRGM, Orléans

With the partnership of:

Andra: X. Bourbon, S. Dewonck, I. Munier, N. Michau

4 89 3740/46 -625.5 ANDRA

2nd International Workshop: Mechanisms and modelling of waste/cement interactions, Le Croisic, October 12-16,2008

CONTEXT: COX/CONCRETE/BENTONITE INTERACTION

- > A coherent thermodynamic database to work in temperature
- > A "complete" mineralogical description of the initial system
- > Transport parameters (porosities, permeabilities, diffusion coefficients, heat conductivities...)

> A Transport reactive code

- PHREEQC (1D)
- TOUGHREACT (radial geometry, non saturated condition,)
- > Experiments to test and improve the modelling

F.CLARET EPI/MIS

- > A coherent thermodynamic database to work in temperature
- > A "complete" mineralogical description of the initial system
- > Transport parameters (porosities, permeabilities, diffusion coefficients, heat conductivities...)

> A Transport reactive code

- PHREEQC (1D)
- TOUGHREACT (radial geometry, non saturated condition,)
- > Experiments to test and improve the modelling

F.CLARET EPI/MIS

http://thermoddem.brgm.fr/

AMORPHOUS CSH

- > Among the various models published that take into account the solubility of CSH, two main families may be distinguished:
 - Discrete phases
 - Solid solutions
- > Nowdays integration of solid solutions in transport geochemical codes lead to crippling computing times

F.CLARET EPI/MIS

COMPOSITION OF AMORPHOUS CSH PHASES (1/4)

> According to the literature and given the crystallographic constraints a 3-phases model was chosen

> Such model already exist (CSH0.8/1.1/1.8)

- Stronach and Glasser (1997) Adv. Cem. Res. Vol. 36 pp.167
- A.C. Courault (2000) Thesis Université de Bourgogne

Strategy used : fitting of the literatures data with a least squares algorithm

2nd International Workshop: Mechanisms and modelling of waste/cement interactions, Le croisic, October 12-16, 2008

- > A coherent thermodynamic database to work in temperature
- > A "complete" mineralogical description of the initial system
- > Transport parameters (porosities, permeabilities, diffusion coefficients, heat conductivities...)

> A Transport reactive code

- PHREEQC (1D)
- TOUGHREACT (radial geometry, non saturated condition,)
- > Experiments to test and improve the modelling

F.CLARET EPI/MIS

STARTING MINERALOGICAL CONDITIONS (CONCRETE)

Amorphous hypothesis @ 25°C (1)

Hyp1 Hyp2

4.93 10-2

4.46 10-3

 $2.02\ 10^{1}$

Concentration mmol/L

Mineral	Structural formula	Volume fraction	Concentration mol/L
C3FH6	Ca ₃ Fe ₂ (OH) ₁₂	0.0216	0.94
Calcite	CaCO ₃	0.7225	130.68
CSH1.6	Ca _{1.6} SiO _{3.6} (H ₂ O) _{2.58}	0.1373	10.83
Ettringite	Ca ₆ Al ₂ (SO ₄) ₃ (OH) ₁₂ (H ₂ O) ₂₆	0.0381	0.36
Hydrotalcite	$Mg_4Al_2O_7(H_2O)_{10}$	0.0041	0.12
KatoiteSi	Ca ₃ Al ₂ (SiO ₄)(OH) ₈	0.0135	0.64
Portlandite	Ca(OH) ₂	0.0629	12.72

Cristalline hypothesis @ 25°C (2)

Mineral	Structural formula	Structural formula Volume C fraction	
Iviniciai	Structurar formula		
СЗАН6	Ca ₃ Al ₂ (OH) ₁₂	0.0144	0.66
C3FH6	$Ca_3Fe_2(OH)_{12}$	0.0216	0.96
Calcite	CaCO ₃	0.7154	130.15
Ettringite	Ca ₆ Al ₂ (SO ₄) ₃ (OH) ₁₂ (H ₂ O) ₂₆	0.0396	0.37
Hydrotalcite	$Mg_4Al_2O_7(H_2O)_{10}$	0.0042	0.12
Jennite	Ca9Si6H ₂₂ O ₃₂	0.1329	1.97
Portlandite	Ca(OH) ₂	0.0729	13.24
	· · · · · ·		

F.CLARET EPI/MIS

 $2.3 \ 10^{-2}$

 $7.46 \ 10^{-3}$

 $2.02\ 10^{1}$

 $4.10\ 10^{1}$

Element

Al

С

Ca Cl

Pore water composition after resaturation with COX pore water

CEM I + calcite aggregate Géosciences pour une Terre durable

prqm

STARTING MINERALOGICAL CONDITIONS (COX)

Mineral	Structural formula	Volume fraction	mol/L	Element	Concentration (mmol/KgW)
Calcite	CaCO ₃	0.2262	27.89	Al	6.93 10 ⁻⁶
Celestite	$SrSO_4$	0.0067	0.66	Fe	$4.84 \ 10^{-2}$
Chlorite	Fe ₅ Al(AlSi ₃)O ₁₀ (OH) ₈	0.0167	0.36	Si	0.18
Dolomite	CaMg(CO ₃) ₂	0.0408	2.90	Sr	0.21
Illite	$K_{0.85}Mg_{0.25}Al_{2.35}Si_{3.4}O_{10}(OH)_2$	0.3406	10.74	K	0.83
Feldspath K	K(AlSi ₃)O ₈	0.0312	1.31	Mg	5.58
Smectite	e $Ca_{0.01}Na_{0.434}K_{0.026})(Si_{3.612}Al_{0.388})Al_{1.608}$ Fe _{0.222} Mg _{0.228})O ₁₀ (OH) ₂₅ ,5.441H ₂ O		2.62	Ca Na	8.80 45.80
Pyrite	FeS ₂	0.0053	1.01	Cl	41.00
Quartz	SiO ₂	0.2465	49.50	S(6)	16.30
Siderite	FeCO ₃	0.0095	1.47	TIC	2.53
Porosity	0.18			pH	7.21
	001 100 101 101 100 100 100 100	• PAC ex	periment		
		<u> </u>	· · · · · ·		

Gaucher et al. Submitted to GCA

Géosciences pour une Terre durable

brgm

STARTING MINERALOGICAL CONDITIONS (MX80 bentonite)

Mineral	Structural formula	Volume Fraction	mol/L	Element	Concentration (mmol/KgW)
Plagioclase	NaAlSi ₃ O ₈	0.0683	1.27	Al	4.43 10-2
Calcite	CaCO ₃	0.0061	0.31	Ca	6.25 10-2
Dolomite	CaMg(CO ₃) ₂	0.0000	0.00	Cl	$4.01\ 10^{1}$
Feldspath K	K(AlSi ₃)O ₈	0.0151	0.26	Fe	8.43 10-3
Smectite	Ca _{0.01} Na _{0.434} K _{0.026})(Si _{3.612} Al _{0.388})Al _{1.608} Fe _{0.222} Mg _{0.228})O ₁₀ (OH) ₂ ;5.441H ₂ O	0.5454	7.55	K Mg	$3.46\ 10^{-1}$ $3.78\ 10^{-2}$
Pvrite	FeS_2	0.0197	0.17	Na	$1.01 \ 10^2$
Ouartz	SiO ₂	0.3327	27.23	S	1.64 10
Siderite	FeCO ₃	0.0028	0.18	Si	$1.92\ 10^{-1}$
Porosity	0.35			Sr	$9.72\ 10^{-4}$
1 01 05105				TIC	$2.66\ 10^{1}$
	70% MX80 + 309	% Sand		pn	0.40

F.CLARET EPI/MIS

Géosciences pour une Terre durable

brgm

- > A coherent thermodynamic database to work in temperature
- > A "complete" mineralogical description of the initial system
- > Transport parameters (porosities, permeabilities, diffusion coefficients, heat conductivities...)

> A Transport reactive code

- PHREEQC (1D)
- TOUGHREACT (radial geometry, non saturated condition,)
- > Experiments to test and improve the modelling

F.CLARET EPI/MIS

TRANSPORT PARAMETERS

2nd International Workshop: Mechanisms and modelling of waste/cement interactions, Le Croisic, October 12-16,2008

- > A coherent thermodynamic database to work in temperature
- > A "complete" mineralogical description of the initial system
- > Transport parameters (porosities, permeabilities, diffusion coefficients, heat conductivities...)

> Transport reactive calculation

- PHREEQC (1D)
- TOUGHREACT (radial geometry, non saturated condition,)
- > Experiments to test and improve the modelling

F.CLARET EPI/MIS

^{2&}lt;sup>nd</sup> International Workshop: Mechanisms and modelling of waste/cement interactions, Le Croisic, October 12-16,2008

2nd International Workshop: Mechanisms and modelling of waste/cement interactions, Le croisic, October 12-16, 2008

2nd International Workshop: Mechanisms and modelling of waste/cement interactions, Le croisic, October 12-16, 2008

TEMPERATURE INFLUENCE ON CLOGGING

2nd International Workshop: Mechanisms and modelling of waste/cement interactions, Le Croisic, October 12-16,2008

2nd International Workshop: Mechanisms and modelling of waste/cement interactions, Le Croisic, October 12-16,2008

- > A coherent thermodynamic database to work in temperature
- > A "complete" mineralogical description of the initial system
- > Transport parameters (porosities, permeabilities, diffusion coefficients, heat conductivities...)

> Transport reactive calculation

- PHREEQC (1D)
- TOUGHREACT (radial geometry, non saturated condition,)
- > Experiments to test and improve the modelling

F.CLARET EPI/MIS

2nd International Workshop: Mechanisms and modelling of waste/cement interactions, Le croisic, October 12-16, 2008

2nd International Workshop: Mechanisms and modelling of waste/cement interactions, Le croisic, October 12-16, 2008

- > A coherent thermodynamic database to work in temperature
- > A "complete" mineralogical description of the initial system
- > Transport parameters (porosities, permeabilities, diffusion coefficients, heat conductivities...)

> Transport reactive calculation

- PHREEQC (1D)
- TOUGHREACT (radial geometry, non saturated condition, thermal gradient....)
- > Experiments to test and improve the modelling

F.CLARET EPI/MIS

OUTLOOK

- > Fully coupled reactive transport considering complex mineralogy and complex geometry with both non-saturated and non-isothermal conditions
- Simulation of fractures of EDZ (due to excavation) by "Multiple INteracting Continua" (MINC function of TOUGH2)
- > Kinetics instead of local equilibrium

> Archie law: retroaction of chemical reactions on effective diffusion coefficient

F.CLARET EPI/MIS

ACKNOWLEDGMENT

MLH : S. Dewonck, Y. Linard UPS : I. Munier, N. Michaud, B. Cochepin GL ESC : X. Bourbon

A. Dauzeres P. Le Bescop

Lawrence Berkeley Lab. :N. Spycher, T. Xu

F.CLARET EPI/MIS

2nd International Workshop: Mechanisms and modelling of waste/cement interactions, Le croisic, October 12-16, 2008

F.CLARET EPI/MIS